Success with Sandy Soils

Chris McDonough - Rural Solutions SA
Dr. Gupta Vadakattu V.S.R. - Principal Research Scientist, CSIRO

Even though sands hold lower amounts of total soil water compared to heavy textured soils, a greater portion of soil water is available for both the soil organisms and plants. In low rainfall years (decile 3 and less) sandy soils tend to provide more available water to crops than loams due to their lower wilting point. Furthermore, rainfall events tend to penetrate deeper into the rootzone that generally has few subsoil constraints and less capillary rise. Therefore there is less water loss through evaporation on sandy soils in low rainfall seasons.

Keys to sandy soils success

Increasing Carbon Turnover
“These soils are basically screaming out for carbon” says Dr David Roget, former CSIRO Senior Research Scientist, “so growing good crops more often has shown to greatly improve soil microbial activity, leading to a much more robust, dynamic and fertile system.”

Soil organisms (biota) are essential for mallee soils, playing a key role in nutrient production, availability and retention. This is more critical in sandy soils as they lack clay, cation exchange capacity and inherent fertility. Carbon inputs from crop residues form the essential energy and nutrient supply for microbial activity.
Increased microbial biomass and activity leads to greater mineralisation of nutrients and fixation of nitrogen through non-symbiotic nitrogen fixation. As nutrients become bound in the microbial biomass, they are protected from leaching, especially in years of high summer rainfall. MSF trials have measured this as high as 50kg N/ha.

Adequate Nutrition
Nitrogen rates of at least 20-30kg/ha in sands is generally required to grow good crops and produce enough dry matter growth to feed the soil biota.

MSF Variable Rate Trials over many paddocks and seasons have also revealed that the sandiest zones of paddocks are often much lower in phosphorus. They were also far more responsive to phosphorus application, often even where the levels were considered adequate (Colwell P>20 ppm). Therefore, you should always soil test sand hills separately to flats, and not neglect phosphorus and also zinc in these areas.

Rotation
Intensive cropping can really improve sandy soils as fertilizing every year leads to greater production and turnover of organic matter and carbon, which is vital for building soil biota.

Disease control through rotation is also vital for turning sandy soils around. For example, sowing lupins into rye or triticale stubbles can certainly set the soils up for a successful wheat cropping phase. In lower rainfall areas farmers have found that cropping two successive years of cereal rye has provided excellent soil cover, a good disease break and returned high levels of organic matter.

No Tillage
NoTill seeding is critical for success on sands. Row spacings of 10”-12” with presswheels create large furrows which channel rainfall into the seed row, resulting in small rains becoming far more affective in the seed zone. This technique can be especially advantageous in non-wetting sands, as the ridges between the rows remain dry and hostile for weeds.

Deep working narrow points also help break up root disease and soil compaction and allow for a deeper profiling of nutrients to encourage better root growth. Be aware that compaction in sands often occurs deeper than 15cm, and deep ripping may still be beneficial. This can be tested by digging a hole in your sand hill after the crop has dried off, to assess if there is still wet soil remaining at 15-40cm.

Cultivation has a very negative affect on sand, as the carbon has poor protection and is readily “burned up” and lost to the system. Cultivation will also break up soil structure that has been created by the binding glues and fungal hyphal networks of the soils micro-organisms, thus increasing the risk of wind erosion.

A healthy dynamic soil
Because the carbon and biota held in sands are relatively unprotected, once soil microbial populations are built up, the soil has a greater ability to respond to rainfall and readily supply nutrients to crops when they are needed. Therefore the fertility and health of the soil is greatly improved.

Increased microbial populations and biological activity can also suppress soil diseases and improve crop production on sandy soils.

Where to next
Productive management of sands involves regularly providing adequate nutrition to grow healthy crops with high organic matter turnover, using no-till seeding.

Targeting inputs into these sandy soil zones using variable rate, precision agriculture technology will help maximise their efficient management and production.

Technical Contact
Chris McDonough, Rural Solutions SA
Telephone 08 85959100
Email Chris.McDonough@sa.gov.au

For further general information please contact MSF on 03 5021 9100

Important
This publication has been prepared by Mallee Sustainable Farming (MSF) Inc. on the basis of information available at the date of publication without any independent verification. Neither MSF Inc., its editors, nor any contributor to this publication represents that the contents of this publication are accurate or complete; nor does MSF Inc. accept any errors or omissions in the contents however they may arise. Readers who act on this information do so at their own risk as soils and environment across the mallee can vary significantly and information presented in this Note should be viewed in consideration of local conditions.

Farmtalk is compiled by Mallee Sustainable Farming Inc www.msfp.org.au